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Gravity in One Dimension: Diffusion in Acceleration 

Bruce N .  Mi l ler  1 

The one-dimensional gravitational system consists of N parallel sheets of 
constant mass density. The sheets move perpendicular to their surface solely 
under their mutual gravitational attraction. When a pair has an encounter, 
they simply pass through each other. In this paper I consider the motion of a 
single sheet in an equilibrium ensemble. Under the assumption that the times 
separating encounters are random, I show that the acceleration and velocity 
(A, V) of a labeled sheet form a Markovian pair. Further, I prove that, in the 
limit of large N, (1)the (A, V) process is deterministic, (2)the (A, V) process 
obeys Vlasov dynamics, and (3)that scaled fluctuations in (A, V) comprise a 
diffusion which obeys a generalized Ornstein-Uhlenbeck process with time- 
dependent drift and diffusion tensors. 
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1. I N T R O D U C T I O N  

A cornerstone of  nonequil ibrium statistical physics is Brownian motion,  the 
behavior  of  a massive particle in a homogeneous  fluid/~) The intuitive 
picture of the particle's mot ion  is that  it experiences r andom collisions with 
the fluid molecules. Consequently,  the velocity of the heavy particle is a 
r andom (Markov)  process. Since the mass of the Brownian particle is 
much greater than that  of the molecules, the r andom change in its velocity 
due to a single collision is small. Therefore the velocity is well represented 
by a diffusion and its probabil i ty density function (pdf) satisfies a F o k k e r -  
Planck (FP)  equation/2) Under  certain limiting circumstances this picture 
can be made rigorous. In one dimension, if the fluid is an ideal gas, 
Holley (3~ has proven that, for a particular scaling, the velocity of the heavy 
particle obeys the Orns te in-Uhlenbeck  ( O U )  process. Dur r  et al, (4) have 
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extended these methods to three dimensions, while Miller and Stein (5/ 
showed that the motion can be modeled by an alternative stochastic 
process which is also successful for nonthermal velocities of the heavy 
particle. 

A central question in astrophysics concerns the stochastic nature of the 
dynamics of the elements of large systems which interact via gravitational 
forces (e.g., a molecule in an interstellar gas cloud, a star in a galaxy or 
globular cluster, or, perhaps, even a galaxy in an extremely large galactic 
cluster). It is well known that, in the limit of a large number of elements 
N of proportionally decreasing mass m, the system can be modeled by a 
continuous fluid in its p space (X, V: X = position, V = velocity). The fluid 
density obeys the Vlasov (or Vlasov-Poisson) equation, sometimes referred 
to as the collisionless Boltzmann equation, and the Lagrangian dynamics 
of a given fluid element is deterministic. (6~ Thus this picture cannot model 
the stochastic nature of individual elements (or particles). 

In his classic work on stellar dynamics, Chandrasekhar modeled the 
motion of a star by assuming that two types of forces were acting: a 
smooth force produced by distant stars which arises from the negative 
gradient of the gravitational potential produced by the smooth average 
density of matter, i.e., the usual field in the Vlasov-Poisson equation, and 
an additional term representing the lumpiness in the true force as a conse- 
quence of near misses with other stars. The near misses were assumed to 
occur at random and provided the source of stochasticity in stellar 
systems. (7) Both astrophysicists and mathematicians have tried to improve 
on this intuitive picture. Heggie and Retterer (s~ have transformed the 
problem of stellar motion to action-angle coordinates. They first set up the 
action-angle variables for the evolution of a star in a smooth mean field 
generated as above by the Vlasov density. To introduce stochasticity, they 
borrow an idea of Kaufman's (9~ and model the canonical angle coordinates 
as a diffusion. For a very well-behaved class of interaction potentials 
(which does not include gravity in three or less dimensions), Braun and 
Hepp (1~ have been able to prove the existence of a diffusion in position 
and velocity in the Vlasov limit. However, the long range of the gravita- 
tional force coupled with its singular short-range limit makes the task 
difficult for systems of real interest. 

In this paper I consider the dynamics of a particle in a one-dimen- 
sional system in which mutual gravitational attraction provides the only 
forces acting on the system elements. The system can be visualized in three 
dimensions as N parallel sheets of constant mass density and infinite spatial 
extent. The motion of the sheets is restricted to the direction perpendicular 
to their surface. The evolution of the intersections of the sheets with a 
similarly directed line defines the system dynamics. Although this system is 
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not easily encountered in nature, it has been of some interest to 
astronomers and astrophysicists for a few decades. It has been employed to 
test a number of conjectures concerning galactic relaxation (n) and it is 
believed by some to model the motion of stars perpendicular to the plane 
of a highly flattened galaxy. (12) 

Some of the central equilibrium properties of the one-dimensional 
gravitating system (OGS) were derived by Rybicki in 1971. (13) In par- 
ticular, he found explicit expressions for the canonical partition function 
and singlet distribution functions in /~ space in the canonical and micro- 
canonical ensembles in terms of the system population N, mass M, and 
energy E. (There are no exact expressions for correlation functions, but 
there are some estimates. (14~) In the limit N ~  o% with the total mass 
N m  = M held constant, Rybicki proved that the /~-space distribution is 
proportional to sech2(X)exp(-V 2) in suitable units (see below). As 
expected, since there is no neutralizing background field as in the case of a 
plasma, the system is spatially inhomogeneous. The local potential induced 
by the equilibrium distribution of mass is proportional to ln[cosh(X)]. 

Between encounters, the motion of a particle in the OGS is easy to 
describe: It simply undergoes a uniform acceleration due to the constant 
gravitational fields contributed by the remaining particles (sheets). Since 
the only forces acting are gravitational, the sheets simply pass through each 
other at an encounter. If it is assumed that all particles have the same mass 
(each sheet has the same mass density), then the particles exchange 
accelerations during an encounter. Thus, when viewed as a function of 
time, the position X of a given sheet and the velocity V are continuous 
functions, whereas the acceleration A is a sequence of discontinuous, 
equally spaced steps. Due to energy conservation, the accessible phase 
space is compact and a typical particle oscillates back and forth in the 
system. From dimensional considerations alone, the average period is on 
the order of ( G p )  1/2, where p is a typical system density. It is customary 
to define the characteristic time t c = ( G p o / r ~ ) -  1/2, where Po is the equilibrium 
mass density evaluated at the origin and G is the universal gravitational 
constant. 

In this paper I argue that, in the Vlasov limit, the acceleration and velocity 
of a labeled particle are deterministic and their scaled fluctuations are a diffusion. 
The diffusion ansatz works like this: 

(1) If N is large, to a first approximation the total field a given particle 
experiences is roughly the mean field resulting from the equilibrium mass dis- 
tribution. 

(2) The true (instantaneous) acceleration of a system member depends on 
its sequence of encounter times. 
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(3) A typical particle experiences about Nencounters in a time tc. 

The change in acceleration in a given small time interval depends solely on 
whether or not it has an encounter during that interval. Memory effects arise 
from reencounters with the same particle.(3' 4) However, the mean time between 
these events is of the order of to, during which time each particle will experience 
about N encounters. Therefore, as N becomes large, it is unlikely that previous 
encounters with the same sheet will be "remembered." 

(4) It is tempting to assume that the acceleration process alone is 
Markov. This is not possible, because both A and V are required to recover 
the Vlasov orbit in the limit N ~ oe. The pair A, V is the minimum set 
necessary to obtain the deterministic orbit in the Vlasov limit. Therefore I 
assume that, for large N, the (A, V) process is Markovian. The source of 
stochasticity is the random time for the next encounter, which is computed 
by conditioning on (A, V) with the equilibrium ensemble. 

(5) As N becomes large, the size of the discontinuous jumps in A 
vanishes as 1IN and the encounter rate increases as N. Therefore, in the 
limit N ~ ~ ,  the (A, V) process is a diffusion. 

The central purpose of this paper is to analyze the consequences of the 
conjecture that the (A, V) process is Markov analytically. In what follows 
I will first develop the machinery for computing the transition probability 
for the state of the labeled particle. By taking the limit of short times, an 
exact difference equation governing the evolution of P, the pdf in (A, V) 
space, will be derived from the Chapman-Kolmogorov equation for the 
point process. I will then demonstrate that, as N--* 0% P satisfies a first- 
order partial differential equation, proving that the A, V process is deter- 
ministic (no diffusion term). Fluctuations in (A, V) will then be scaled by 
x /N and I will show that, as N ~  o% the process they define is also 
Markovian, but a diffusion, with one nonvanishing second moment. A 
Fokker--Planck equation governing the pdf for the scaled fluctuations will 
be derived and its features will be discussed. In a later paper Willard Maier 
and I will use actual dynamical simulations to demonstrate how well it 
works. Equivalently, it is possible to show that all powers but the first 
of the infinitesimal increments of A and V vanish as do all powers above 
the second for the fluctuations, leading to the identical formulation and 
conclusions. (2, 5 

2. T H E  S E T U P  

Let m be the mass density of each sheet (equivalently, the mass of each 
particle). The gravitational field contributed by a single sheet is 2~mG 
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directed toward the sheet. Since the field experienced by a particle is simply 
the sum of the constant fields produced by all the other particles, the 
acceleration of the j t h  particle from the left is proportional to the difference 
between the mass on its right and the mass on its left: 

A: = 2~Gm [-N + 1 - 2j] (1) 

Because two masses simply pass through each other at an encounter, the 
position and velocity of each particle are continuous functions of the time, 
and the particles simply exchange their accelerations. Thus, except for 
questions concerning labeling, the equal-mass system considered here is 
isomorphic to one in which the particles collide elastically on contact. 

To evaluate the probability of an encounter in a small time interval, 
I will use the canonical ensemble with the understanding that, in the limit 
of large N, the results are indistinguishable from those of the micro- 
canonical ensemble. The central properties of each ensemble were carefully 
worked out by Rybicki in 1971. (13) Here I just borrow what I need. 

The potential energy of a pair of sheets located at Xi and X:. is 
2"aGm 2 IXi-)(j[.  Thus the probability distribution in phase space is given 
by 

~N(X, P)=6 (~  Pj) g) (~  Xj) exp(-~E)/Z (2) 

where E is the total system energy, 

E= Z (P~/2m) + 2~Gm 2 ~, IX i -  Xj] (3) 
i < ,j 

Z is the partition function, /~= 1/kT, and (X, P) signifies a point 
(X ' I  . . . . .  PN) in the 2N-dimensional phase space. The delta functions ensure 
that the total momentum is zero (zero drift) and that the center of mass is 
fixed at the origin. 

The potential energy in (3) is expressed as a sum over pairs of par- 
ticles. It is much more useful to represent it as a sum over nearest neighbor 
pairs in the ordered configuration. This can be accomplished by noting 
that if the separations of all but one of the nearest neighbor pairs are 
fixed, then the work required to separate this pair by the distance U is 
2rcGm2j(N-j) U, where there are j - 1  sheets to the left of the given pair. 
Thus the total potential energy of the N-particle system may be expressed 
a s  

PE = 2~Gm 2 ~ j (N-  j)( gj+l - Yj) (4) 
I ~ j < ~ N  1 
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where, in (4), the {Y/} are selected from the {X/} by ordering them and 
relabeling so that Y/+I ~> Y/. We will call these coordinates the ordered 
configuration. 

The previous result (4) suggests that, by introducing appropriate coor- 
dinates, we can express the phase-space pdf (2) as a product of independent 
functions 'of the separations between nearest neighbors. Let 

U/=Y/+~-Yj>~O; j =  1,..., N -  1; UN=EY+ (5) 

With a little algebra it is easily shown that the transformation preserves 
volume elements in the N-dimensional configuration space (13) 
(IJacobian]=l).  In terms of the new coordinates the phase-space pdf, 
NN(U, P), takes the form of a product of exponential distributions, 

x ~I Ajexp(-A/U/) O(Ug) 
I~j<~N--1 

where O(U) is the usual step function, 

(6) 

KE = ~ p2/2m (7) 

is the total kinetic energy, 

A+ = m2fi2rcGj(N- j) = A (A/) (8) 

and the temperature is related to the mean energy by 

]~(E) = (3 /2) (N-  1) (9) 

Equation (9) is easily obtained by applying ( E )  = -(?(In Z)/~?fl to (6) and 
reflects the fact that momentum conservation removes one degree of 
freedom. <13> It is apparent from (6) that the U/are statistically independent. 
This is important for computing the probability of an encounter in a small 
time interval. 

3. T H E  P O I N T  P R O C E S S  

The diffusion in velocity of an ordinary "Brownian" particle follows 
from the assumption that atomic collisions with the heavy particle occur at 
random times with random velocities. For the self-gravitating system with 
large population N, we focus on the acceleration and velocity, A and V, of 
a labeled particle. A changes as a result of encounters with other particles 
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in the system. Here we assume that encounters occur at random times. By 
conditioning on A and V, we use the canonical ensemble to compute the 
probability of an encounter with another particle in a short time interval. 
With this assumption, the evolution of the pair A, V is modeled by a 
Markov process. For finite N the changes in A are discontinuous, so we 
start with a point (jump) process, rather than a diffusion. (2) By taking the 
limit of large N, with Nm = M held constant as above, we will show that 
(1) the A, V process is deterministic and (2)scaled fluctuations of A and V 
about their deterministic limits define a generalized Ornstein-Uhlenbeck 
process with time-dependent drift and diffusion tensors. (15'16~ 

3.1.  E v o l u t i o n  of  P r o b a b i l i t y  

Let P(A, V, t) be the probability distribution for the labeled particle. 
For  finite N, A takes on discrete values [see (1)] and V is continuous. P 
obeys the Chapman-Kolmogorov equation (1'2'15'16) for the "conservation" 
of probability in which TP is the probability density of a transition from 
A', V' to A, (V, V+dV) in the short time At: 

P(A, V, t + At) = f dV' ~ TP(A, V; A', V') P(A', V', t) (10) 
A '  

The change in A due to an encounter is AA = +4~G/N= +_A, depending 
on whether the approaching particle is coming from the left or right. Thus, 
in the limit of small At, TP is the sum of the following three contributions: 

TP = 6(V-- V ' - A '  At)(6A,A,{ I-- [pR(A) + pL(A)] At} 

+cSA. A, ~pR(A')At+fiA,A,+~pL(A')At) (11) 
respectively. 

The crossing rates for encounters from the right and left, PR and PL, 
depend explicitly on A and V. We require the canonical phase space pdf 
to determine their functional dependence. Assume that the labeled particle 
is in the j t h  "slot" at the time t, i.e., that its acceleration is A = Aj. The 
condition for an encounter from the right [left] in the time interval 
At is (V j -  V~+I)At> Uj[(Vj_~- Vj)At> Uj_I]. Using the canonical 
distribution, the conditional probability of an encounter from the right 
(left) through first order in At is 

pR(A) A t = A j ( ( V -  Vj+I)O(V- Vj+ 1)[ V~= V) At 

- (l /c) AJ(Vc) At (12) 

pL(A)At=Aj I((Vj I - V )  O(Vj ~- -V)[Vj=V)At  

- (1/e) A t ~ f ( -  r e )  ~ t  (13) 
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where, as usual, the angle brackets denote the ensemble average subject to 
the condition following the vertical bar, c = (m~/2) 1/2, and, to leading order 
in 1/N, 

f ( x )  = (1/2)Ix + ~z 1/2 e x p ( - x  2) + x eft(x)] (14) 

By taking the limit of small At in (10), we obtain the following hybrid 
differential-difference equation for the evolution of P(A, V, t): 

OP/Ot + A (?P/O V -  (AJc) f (c  V)[P(A + A, V) - P(A, V)] 

- ( A j  _ 1 /c )  f (  - c V ) [ P ( A  - A ,  V )  - P ( A ,  V ) ]  

+ [ ( A j - A j  1 ) f ( c V ) P ( A + A ,  V)] 

+ [ ( A j  1 - A j ) f ( - c V ) P ( A - A ,  V ) ] = 0  (15) 

where Aj and Aj 1 are to be regarded as functions of the acceleration by 
solving for j in (1) and substituting in (8). 

3.2. Rybicki Units 

Because the potential energy is homogeneous to first order in the coor- 
dinates, the equations of motion can be reduced to dimensionless form. 
Moreover, all explicit system-dependent parameters, such as the total mass 
and energy, can be scaled away. Convenient units were introduced by 
Rybicki as follows: 

unit of length L = 2E/3rcGM 2 

unit of velocity = (4E/3M) 1/2 

unit of time T =  (1/TzMG)(E/3M) 1/2 

In these units, A, AA, A, and V are given by 

A--*a=A/2~tMG, J--*8=Z/N, A--* 2 = ( N / 2 ) ( 1 - a  2) 
(16) 

V ~ v = c V ,  t ~ = t / T ,  c ~ l  

where we have dropped terms of order 1IN in )~, and M is the total system 
mass. From (15) it follows that the evolution equation for P(a, v, ~) is 

•P/3z + a QP/Ov - 2f(v)[P(a + 8, v, z) - P(a, v, z)] 

- 2 f ( - v ) [ P ( a - 8 ,  v, r ) - P ( a ,  v, z)] 

+ 2a[f(v) P(a + 8) - f ( - v )  P(a - 8)] = 0 (17) 

Note that the only explicit system parameter which remains in (17) is the 
population N, which occurs in 2 and 8. 
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4. V L A S O V  L I M I T  A N D  T H E  D I F F U S I O N  P R O C E S S  

In the limit where N becomes large, the size of the acceleration jumps 
vanishes and the Markov process becomes a diffusion. 

4.1. V lasov  L imi t  

Physically the Vlasov limit describes a system comprised of a con- 
tinuous gravitating fluid in # space. It can be obtained from the discrete 
case by letting the population diverge while controlling the total mass and 
energy. {6) In the limit N-+ ao, with M =  N m  (total mass/area) and E (total 
energy) constrained, 

)~ -* o0, 6-+0,  23-+ 1 - - a  2 (18) 

If we expand our version of the Chapman-Kolmogorov equation (17) in 
powers of 6 and apply the Vlasov limit (18), we obtain 

c3P/~z + a OP/c3v + 2avP - (1 - a2)v OP/aa = 0 (19) 

This is a Fokker Planck equation with vanishing diffusion tensor. Thus, in 
the Vlasov limit, the a, v process is deterministic: There is no noise. (2"5) The 
solution of (19) is simply 

P(a, v, r) = fi(a - a) 6(v - g) (20) 

where a(r), ,5(z) represent the deterministic evolution of a and v. Substitu- 
tion of (20) into (19) yields a contribution from 6 ' ( a -  a) and another from 
6'(v-rT). For  a solution, the coefficient of each must vanish identically. 
Thus, a(z) and ~(z) obey the following ordinary differential equations: 

dgt/dr= - ( 1  - a2)~, dUclr=gt (21) 

This evolution corresponds to single-particle motion in the potential ~0(x) 
produced by the average equilibrium density p(x),  where 

~p(x) = In cosh x, p (x )  = (1/2) sech z x (22) 

This can be seen by regarding x =  x(r)  as the trajectory of the "particle" 
and substituting - & o / d x =  - t a n h [ x ( z ) ]  for ~ in (21). Consequently, we 
recover the usual Vlasov theory, in which the system evolution takes the 
form of an incompressible flow in #(x, v) space, from the (a, v) Markov 
process. 
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4.2. F luc tua t ions  

We have seen that, in the Vlasov limit, the width of P(a, v, ~) vanishes, 
along with fluctuations in (a, v). In contrast, regardless of the magnitude of 
the system population, they are always present in the discrete system. In 
order to model their behavior for asymptotically large N they need to be 
amplified. 

Let 4, t/ represent the scaled fluctuations in the acceleration and 
velocity about their respective deterministic limits, 

= x/N(a - ~i), r/= x/-N(v - ~) (23) 

For finite N, (~, r/) still refers to the specific labeled particle and contains 
equivalent information to (a, v). Since ~(T) and ~(r) are known functions of 
the time given by (21) with appropriate initial conditions, and, by 
hypothesis, (a, v) is Markovian, so also is the pair (4, t/). Because a(t) 
changes discontinuously at encounters, so does 4. However, here the size of 
the jumps go as 1/x/N. In the Vlasov limit, the jumps become vanishingly 
small and (r t/) becomes a diffusion. 

We may use the definitions (23) to directly convert the difference 
equation (17) to an equation for the evolution of P(~, r/, z), the pdf for 
(~, r/), by directly substituting P(a, v) da dv ~ P(r tl) d4 drl and trans- 
forming variables. For finite N the result is still awkward. However, in the 
Vlasov limit, we find with a little work that the evolution equation is the 
Fokker-Planck equation 

O,P= -~,(~P)-Or162 v)P]+(1/2)O~[D(~)P ] (24) 

in which D(r) is the time-dependent diffusion constant, (5'15'16) 

D(v) = 2(1 - a2)[f(g) + f (  - v ) ]  (25) 

and F(~, q, r) is the space- and time-dependent drift, (5'15'16) 

F(~, t/, v) = 2~ig4 - (1 - 62)t/ (26) 

Thus, 4, t/ comprise a well-defined continuous Markov process (diffusion) 
which characterizes the drift of a labeled particle away from ideal Vlasov 
behavior. 

The particular Fokker-Planck equation (24) belongs to a well-known 
class, the generalized Ornstein-Uhlenbeck process, which has its origins in 
Brownian motion. (15'16) (Here, as above, we have in mind the physical ver- 
sion of Brownian motion which models the behavior of a massive particle 
in a fluid.) Compared with the ordinary OU process, the state space is two 
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dimensional and the drift and diffusion tensors are time dependent. (~s'16) In 
this particular case the time dependence is periodic and depends on the 
Lagrangian orbit of a point in the Vlasov fluid. (~7~ It is known, and is 
readily demonstrated by direct substitution, that (24) has a bivariate 
Gaussian solution. (~6) 

The central results of this section are embodied in Eqs. (21) and (24). 
Here they were derived by directly analyzing the transition probability in 
the Vlasov limit. Alternatively, they could have been obtained using the 
more general methods of ref. 5 by carrying out a moment expansion 
of the Chapman Kolmagorov equation and examining the behavior of the 
infinitesimal increments for the (a, v) and the (4. ~/) processes. 

4.3 .  U s e f u l n e s s  o f  t h e  M o d e l  

Although (24) is elegant, much simpler than (17), and solvable, by 
taking the Vlasov limit we have formally lost contact with the discrete 
system we wish to model. A similar phenomenon occurs in Brownian 
motion, where, depending on the particular limit taken, the mass of the 
colliding particles vanishes, or the mass of the heavy particle diverges. (3'5) 
In the Vlasov fluid any acceleration ~ is possible, whereas in the original 
system only discrete values occur. Important questions concern the rela- 
tionships between the deterministic (a, v) process and the (4, q) diffusion 
and an actual realization of the physical system. 

As N becomes large, the motion of an individual sheet remains close to 
its Vlasov image (a, ~) for long times. (~2) and (~2), the time-dependent 
variances of { and r/, provide a measure of the growth of the deviation from 
ideal Vlasov behavior in time. Because the diffusion model (24) is smooth, 
it cannot resolve the graininess of the actual accelerations: In the short- 
time limit, the solution of (24) will simply collapse to (20). Conversely, 
after sufficiently long times, the values of (a, v) for the test particle will 
differ considerably from its image: For differences on the order of, say, 
([-~a2}] 1/2, [(v2~] 1/2) it is no longer reasonable to identify the test par- 
ticle with its initial condition, which will be forgotten. Since, in Ribycki 
units, these quantities are of order unity, this will occur when the variances 
of { and/or ~/are on the order of N. Thus, it is expected that an ensemble 
of systems chosen by sampling the equilibrium distribution while condi- 
tioning on the initial state of the test particle will be successfully modeled 
by the diffusion process for times such that (l/N) < ({2) << N, (?/2) << N. 
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5. C O N C L U S I O N S  

The central conclusions of this study are: 

1. In contrast with a single massive particle in an ordinary gas, where 
the pair of variables (X, V), or simply V alone, is a diffusion, in the one- 
dimensional gravitating system each member of the system diffuses. 
However, here only the pair of variables (A, V) is Markovian, A alone is 
definitely not. In addition, in the gravitating system it is not necessary to 
rescale the time. This is due to the fact that the mean encounter rate for the 
system scales as  N 2. In the limit of large N, the pair A, V is deterministic 
and follows the usual Vlasov mean-field theory. 

2. In the OGD, V, X, ~ (=energy of a labeled particle) are com- 
putable processes, but they are not Markovian. This result may have 
relevance in astrophysics, where it is frequently assumed that e can be 
modeled by a Markov process in which the random force is produced by 
distant stars in a globular cluster or galaxy. (18/ 

3. In the Vlasov limit, the pair of scaled fluctuations 4, t/ about the 
deterministic acceleration and velocity is Markovian, and is controlled 
either by an inhomogeneous nonstationary stochastic differential equation 
or a Fokker-Planck equation (24). The pair (4, t/) obey a generalized 
Ornstein Uhlenbeck process with time-dependent drift and diffusion 
tensors. Information concerning the statistics of the process is contained in 
the pdf governing P(~, t/, v), which is known to have an explicit bivariate 
Gaussian solution. 

4. Associated with an ensemble of similarly prepared one-dimen- 
sional gravitating systems at any time is a Vlasov fluid with mass density 
in # space proportional to the singlet particle distribution function. If the 
system population N is large, the orbit in A, V space will closely 
approximate the orbit of a mass point in the fluid. However, as time 
progresses, the distance between the true element and its Vlasov "image" 
will increase on a time scale on the order of the crossing time of the system 
by approximately 

(1/x/N) f f  ( l~( t ' ) l )  dr' (27) 

5. It is expected that the diffusion model is robust and will correctly 
model the single-particle fluctuations while the predicted variance remains 
considerably less than the system population. 

In a followup investigation we will provide solutions to both the deter- 
ministic and Fokker-Planck equations (20) and (24) and compare them 
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with dynamica l  s imula t ions  of the system which are now underway.  One 

p re l iminary  result  is that  the t ime-per iodic  behav ior  of 6 and  g results in 
unusual  focusing effects for energetic part icles  which are d ramat i ca l ly  
verified in the s imulat ions.  
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